You, Me, and My Brain:
Self and other representations in social cognitive neuroscience

Jamil Zaki and Kevin Ochsner

Department of Psychology, Columbia University, New York, NY 10027

Address correspondence to:

Jamil Zaki
Department of Psychology
Columbia University
Schermerhorn Hall
1190 Amsterdam Ave.
New York, NY 10027
jamil@psych.columbia.edu
“Say this blanket represents all the matter and energy in the universe, okay? This is me, this
is you. And over here, this is the Eiffel Tower, right, it's Paris!”

-- Bernard Jaffe, *I Heart Huckabees*

In the film, “I Heart Huckabees” the magic of digital effects allows characters to see bits
of themselves appear in the pixilated faces of others. Soon after experiencing this literal
mirroring of him or herself in someone else, each character is moved to act compassionately,
even towards previous enemies. Vaguely echoing Eastern philosophy, one of the main
characters (as quoted above) claims that in moments of clarity, people come to understand that
they are actually made from the same blanket, so to speak, and that self/other distinctions are an
illusion.

Does dissolving boundaries between ourselves and others actually help us to navigate the
social world? Do we, in fact, understand the mental and emotional states of others using
processes that are similar to those we use to think about ourselves? As with most psychological
questions this broad, the answer is most likely both yes and no. On the one hand, behavioral
research suggests that quite often we use ourselves as a template or anchor when trying to piece
together the contents of someone else’s mind (Epley, Keysar, Van Boven, & Gilovich, 2004).
This overlap is attested to by our astonishing success at quickly inferring and learning from the
goals of others, a type of learning that would only be possible if we understood others as
operating much like we do, in pursuit of goals much like our own (Tomasello, 2000). These
tendencies produce predictable errors as well. For example, before their 4th birthday, the
majority of children despotically assume that others see the world the way they do, and it takes
the development of inhibitory control to quell this tendency and enable children to understand
that others have thoughts and desires independent from their own (Carlson & Moses, 2001).
Similarly, adults will incorrectly guess that things they have just learned (e.g. the brand names of two sodas in a taste test) will be known by others who have not had the benefit of having the answers told to them, and it takes cognitive effort to override this assumed overlap and correctly judge other people’s state of knowledge (Epley, Keysar, Van Boven, & Gilovich, 2004).

On the other hand, most adults are easily able to infer differing mental states in others, and do so countless times every day. Planning surprise birthday parties and imagining what Christopher Columbus would think about a Corvette are just two examples of situations in which perceivers are able to separate their minds from those of others, and use rule based processing to infer the contents of those others’ mental states.

How do we reconcile our tendencies to think of others as being similar to us with the importance and ease of seeing ourselves as different from others? To address this issue, this chapter adopts a social cognitive neuroscience approach, using information about the brain to constrain thinking about the psychological processes we use to perceive people. We review neuroimaging work on self-perception, emotion, and social cognition with an eye towards understanding the person perception processes that lead to our dual tendencies to see others as both like and not like ourselves. Our framework differentiates between two modes of processing information about people – one that is a quick, direct and bottom up and another that is deliberative, reflective and top-down. We then examine whether self and other overlap may depend critically on which mode of processing perceivers are engaging.

Towards this end, the remainder of the chapter is divided into three parts. First, we describe elements of the social cognitive neuroscience approach that guide the formulation of our framework. Then, in the second and most detailed section of the paper, we review and synthesize recent imaging research on self and other perception in both direct and reflective
modes of processing. This section will unpack each cell of the 2*2 matrix created by crossing type of target perceived (self or other) with mode of processing engaged (direct or reflective). For each cell, we will draw on a growing neuroimaging literature to help constrain our thinking about the information processing steps that characterize self and other perception. By examining commonalities and differences among activation foci from previous studies on self-perception, emotion, and social cognition, we can identify neural systems engaged by each processing mode and for each type of social perceptual target. Finally, in the third section we will use prosocial behavior as an example to illustrate how knowledge about neural representations of self and other can help inform our understanding of long-standing social psychological questions.

A SOCIAL COGNITIVE NEUROSCIENCE APPROACH

Social cognitive neuroscience (SCN) emerged in the past decade as a combination of the theories and methods of its parent disciplines: social psychology and cognitive neuroscience (Ochsner, In Press; Ochsner & Lieberman, 2001). True to its heritage, SCN's goal is to understand the abilities necessary to effectively navigate the social world at multiple levels of analysis, bridging descriptions of social and emotional behaviors and experiences to models of their underlying psychological processes and neural bases.

SCN differs from its parent disciplines in a few important ways. Perhaps most straightforwardly, SCN differs from its social psychological parent in its use of neuroscience data to constrain and inform psychological theorizing (Ochsner & Lieberman, 2001; Lieberman, 2007). But there is another important, and perhaps less obvious way in which SCN is distinguished from the other of its parents. In contrast to cognitive neuroscience, SCN emphasizes the core social psychological idea that situations or contexts determine how we think.
and act (Ochsner, in press). So central is this idea to social psychology that, as Matthew Lieberman put it, “…if a social psychologist was going to be marooned on a deserted island and could only take one principle of social psychology with him it would undoubtedly be the ‘power of the situation’” (Lieberman, 2005). The same might be said of the social cognitive neuroscientist.

Previously, we have argued that the goal of SCN is to construct multilevel models of the way in which one’s current context – which includes both the external situation and one's internal states and traits - constrains how we construe the meaning of social cues (Ochsner, in press). Whereas the cognitive neuroscientist might want to understand the brain systems involved in perceiving faces or facial expressions of emotion, a social cognitive neuroscientist might want to take that understanding further by asking how one's interaction goals (e.g. to form an impression or to connect empathically), beliefs about the other person’s intentions (e.g., whether they intend to help or to deceive), current mood state or group membership (e.g. whether they are black or white) lead to the recruitment of different sets of brain systems involved in perception, emotion, judgment and control.

In the sections that follow, the SCN approach will guide a systematic review of recent functional imaging research exploring distinctions in the neural activation corresponding to distinctions between targets (self or other) and modes of processing (direct or reflected). Tables 1 and 2 indicate the phenomena and studies that were included in each cell of this 2*2 matrix.

Neuroimaging data can help constrain our theories about how these processes interact in two ways: first, by showing that two or more types of behavior that were thought to be similar actually depend on different information processing mechanisms (e.g. implicit and explicit memory formation (Schacter, Alpert, Savage, Rauch, & Albert, 1996)), and second, by showing
that two types of behavior that were thought to be different actually depend upon similar mechanisms (e.g. visual perception and visual imagery, (Kosslyn & Ochsner, 1994)). Furthermore, by aggregating results of several studies, we can examine the reliability of relevant findings, such as the activation of a certain brain region during a certain task type (cf. Phan, Wager, Taylor, & Liberzon, 2002).

With this in mind, the review below will describe how different brain systems come into play as a function of the situational (i.e. context-specific) goals to understand thoughts, emotions, or traits, goals that in turn lead one to engage in direct or reflective modes when perceiving different kinds of social targets (i.e. one’s self or other people).

FROM DATA TO THEORY: BUILDING A SCN FRAMEWORK FOR UNDERSTANDING SELF-OTHER REPRESENTATION

If Bernard Jaffe’s notion that all people are cut from the same fabric is to be treated as more than a post-hippie platitude, it needs to be grounded in empirical research findings. The goal of this section is to use a review of brain imaging data to bring ideas about self-other similarity down to the brain. To accomplish this goal, we first briefly review past SCN work that has attempted to identify either the neural correlates of direct and reflective modes of processing or of self and other judgment. This work sets the stage for the meat of the review that examines the neural systems implicated in direct and reflective modes of processing for self and other.

Dual-process models in SCN

SCN research has begun to develop two process models of behavior, and other, similar models of self and other perception. As will be shown below, these models have yet to make substantial contact with one another.
Explanations of behavior that appeal to the interplay of direct and automatic as opposed to reflective and controlled processes are about as old as experimental psychology itself. In social psychology, many such dual process models have been offered to explain phenomena ranging from stereotyping and dispositional inference to emotion regulation (Gilbert, 1999; Ochsner & Gross, 2004).

Although the details vary from theory to theory, most models agree upon the basic properties of a direct and automatic mode of processing as opposed to a controlled and reflective one (for several examples of such theories, see Chaiken & Trope, 1999). Automatic processes are thought to operate without the costly and cumbersome need to bring mental contents into our awareness for deliberation. Through the simple perception of stimuli that activate mental representations of emotions, stereotyped outgroups, our self concept, and so on, automatic processes can guide the formation of impressions, can shape judgments and decisions, can generate emotions, and may even queue up goals that motivate and guide actions (e.g. Bargh, Gollwitzer, Lee-Chai, Barndollar, & Trotschel, 2001). By contrast, controlled processes are recruited when, for whatever reason, we need to reflect on or control the impressions, feelings, thoughts or actions generated by processes operating automatically outside our awareness. Typically reflective control occurs either because we have the explicit goal to be deliberative in a given situation or because of some error or problem that produced by the direct mode of processing). Depending on the theory, these two types of processes have been described as working either in competition or in collaboration, either simultaneously or exclusive of one other, and with or without sharing information (Gilbert, 1999).

Recently, dual process models have begun to inform social cognitive neuroscience analyses of person perception (Lieberman, In Press), emotion (Ochsner & Feldman Barrett,
Self and other representations 8

2001) and emotion regulation (Ochsner & Gross, 2005). In general, these models posit that the direct and bottom-up route for perceiving people or generating emotion depends upon brain systems different from, but partially overlapping with, those involved in the reflective mode of processing. Although the neural players implicated in the direct mode may vary from context to context, depending upon the specific features of the stimulus at hand (e.g. whether it is painful, visual, auditory, verbal or pictorial, and so on), for reflective control one player takes center stage for virtually all behaviors. The prefrontal cortex (PFC) is thought to be essential for most aspects of reflective processing, and current work is examining the role of discrete frontal regions in holding information in memory, selective attention, inhibiting prepotent impulses, and higher-order reasoning.

Self and Other Perception in SCN

As discussed in the introduction, questions about whether we see others as we see ourselves have been central to behavioral research for many years. SCN work begun to investigate this issue by asking a related question: whether judgments about one’s own states and traits depend upon brain systems similar to judging the states and traits of others. This question has been asked in parallel by two different literatures in the field. The first has to do with the neural overlap underlying reflections about the self and others, and has most often been associated with research on theory of mind. One region in particular – the medial prefrontal cortex (MPFC) - consistently plays a key role in judgments about both self and other, but the nature of MPFC’s involvement it is not yet clear. Some studies have found greater activity in ventral portions of MPFC when thinking about one’s own as compared to a non-close other’s traits (Fossati et al., 2003; Kelley et al., 2002; Macrae, Moran, Heatherton, Banfield, & Kelley, 2004; Northoff et al., 2006). Studies of theory of mind and perspective taking have found
activations in more dorsal areas of MPFC occurring while subjects make judgments about the mental states of others (Fletcher et al., 1995; Gallagher et al., 2000; Goel, Grafman, Sadato, & Hallett, 1995; Mitchell, Heatherton, & Macrae, 2002). Other work suggests that the MPFC regions involved in making judgments about one’s self and someone else’s mental state may overlap (Ochsner et al., 2005), and that furthermore, this overlap may be moderated by how similar perceivers feel to the people they make judgments about (Mitchell, Banaji, & Macrae, 2005; Mitchell, Macrae, & Banaji, 2006).

The second literature concerns the overlap between the brain areas underlying motor representations of self and other, and has been centered in research on so-called ‘mirror neurons’ in the premotor cortex of non-human primates. These neurons fire both when primates perform an action, and when they see another animal performing the same action (Rizzolatti, Fogassi, & Gallese, 2001). This overlap in neural action representations has been reproduced in humans, and a growing number of studies have now explored overlapping representations of sensory experiences as well. For example, one fMRI study exposed unlucky participants to aversive odors as well as faces expressing disgust, and showed an overlap in activation of the insula for both of these conditions (Wicker et al., 2003). Similar studies have shown overlaps in the perception of pain (Botvinick et al., 2005; Jackson, Meltzoff, & Decety, 2005; Morrison, Lloyd, di Pellegrino, & Roberts, 2004; Singer et al., 2004), touch (Keysers et al., 2004), and basic emotions (Carr, Iacoboni, Dubeau, Mazziotta, & Lenzi, 2003; Leslie, Johnson-Frey, & Grafton, 2004).

“Motor theories” of social cognition and empathy, largely based on the mirror neuron literature, suggest that social cognitive abilities are mediated largely by the fast, automatic and bottom-up activation of representations of internal states that perceivers see in others. These
representations are overlapping, or “shared”, to the extent that they are recruited both when one engages in an action and when one sees someone else engaging in the same action. An assumption made by these motor theories is that the bottom-up or stimulus-driven activation of “shared” affective representations creates the feeling in a perceiver that he or she would experience if an event being witnessed was experienced personally. For example, seeing someone else get kicked in the shins may cause a perceiver to wince automatically, actually feeling some measure of discomfort themselves. Motor theories take this and other similar phenomena as a starting point to propose that in fact many of our judgments about other people (predicting their actions, intentions, and beliefs) are built on similar overlapping representations (Gallese, Keysers, & Rizzolatti, 2004).

One problem with such accounts is that, while providing explanations of how we understand actions, they fare worse when used to explain our understanding of feelings and beliefs, especially when perceptual inputs are absent or ambiguous. There are many such cases in everyday life, such as when a depressed person has flat affect, when someone is trying to deceive us with a fake smile, or when someone has a false belief that a perceiver does not share (Jacob & Jeannerod, 2005). Alternative theories propose that in these cases, perceivers use rule-based, top down processing to dissociate representations of self and other, and in this way may be able to infer states in others that differ from their own (Saxe, 2005). In this way, perceiving an ambiguous behavior may have much in common with perceiving any kind of ambiguous visual object: when an incoming percept is not correctly classified using bottom-up processes, the top-down use of attention and stored knowledge can guide a perceiver to test hypotheses about what she is perceiving, or guide her towards goal relevant stimuli (Posner, 1980).
Upshot On one hand, current work provides some intriguing initial models of how we engage in direct/bottom-up and reflective/top-down modes of perception, but the models have yet to explain how and when the engagement of each mode depends upon the target of judgment – self or other. On the other hand, current work has made progress towards clarifying when similar neural representations may underlie perception of and judgments about self and other, but controversies exist as to when and how such ‘shared representations’ or common brain regions are recruited during these processing steps. In the next section, we will show how simultaneously taking both the mode and the target of judgment into account may help in resolving these ambiguities.

TOWARDS A DUAL PROCESS FRAMEWORK FOR SELF-OTHER PERCEPTION

Before discussing the results of our division of previous work, it is worth commenting on the phenomena we chose to include in each analysis, as well as to recap our goals in this review. First, although we included various person perception phenomena from Table 1 in our analysis, we have chosen to emphasize the perception of emotions in self and other in our discussion. This is because emotion is the perceptual attribute most clearly present in all four cells of our processing mode * target matrix. For example, as can be seen in Table 1, while one can reflect on one's own or someone else’s traits, neuroimaging studies of direct processing of trait information are virtually non-existent.

Secondly, by using a factorial approach, we hoped to isolate patterns of activations from previous studies that would map onto either a main effect of self versus other perception, or onto direct versus reflective modes of processing. We then used this framework to probe for interaction effects of perceptual target with processing mode. Specifically, as discussed above, prior work had suggest that neural representations of self and other would overlap, but we
expected that the extent of overlap would in some way depend on the mode of processing being engaged. Such interactions could suggest that, in fact, when considering how much people tend to view themselves and social targets as overlapping, it is critical to understand the mode they are using to view those social targets.

Main effects of target and processing mode

Type of Target: Self vs. Other: We first collapsed activations across all studies of both direct and reflective processing modes, and separated them only by the target of perception, to test the hypothesis that the processes used to perceive self and other are represented in discrete neural structures. The resulting images clearly show that such a broad distinction cannot be made based on brain data (Figure 1). Studies of both self and other perception have reported activations in regions of the brain associated with processing information about emotions, traits, and intentions. Importantly, across the large majority of studies, both the dorsal and ventral MPFC were activated regardless of whether subjects focused on themselves or someone else.

Furthermore, a host of other areas involved in emotion perception and social cognition, including the superior temporal sulci (STS), anterior insula (AI), amygdala, and posterior cingulate (PCC), also were activated in both self and other perception. Each of these regions may play important roles in person perception generally. For example, the STS has been implicated in decoding the social meaning of nonverbal cues such as eyes that vary in the direction of gaze, moving lips and forms with biologically possible motion, and tasks involving the assessment of theory of mind or trait attribution (Pelphrey, Morris, Michelich, Allison, & McCarthy, 2005; Saxe, Xiao, Kovacs, Perrett, & Kanwisher, 2004). By contrast, the AI has been implicated in representing internal bodily states, as well as in pain processing. However, it has
also been shown to become active while subjects focus on the pain and bodily states of other people, suggesting that it is not specific to self-perception (Botvinick et al., 2005; Keysers et al., 2004; Wicker et al., 2003). Similarly, the PCC has been associated with self directed thought, as well as drawing attention to salient external cues (Vogt, Vogt, & Laureys, 2006). Furthermore, PCC shows high functional connectivity with the MPFC, suggesting that these regions work together during reflection about both one’s self or someone else (Lou et al., 2004).

Briefly, two differences between self and other related activation peaks are worth noting. First, other-related activations in posterior MPFC tended to be dorsal to self-related activations. That is, whereas self-related activation peaks were observed along the cortex adjacent to the corpus callosum, other-related peaks were more often dorsal to the cingulate gyrus. It is known that medial prefrontal cortex evolved in a radial fashion, with the architectonically ancient three layered cingulate gyrus gradually developing into adjacent six layered portions of medial prefrontal cortex proper. That fact rather intriguingly suggests a developmental relationship between regions involved in perceiving oneself and those involved in perceiving others. That being said, this separation is by no means complete, and taken alone does not shed light on the nature of the computations performed by these regions (which will be discussed below). Second, more activation peaks in the thalamus and hypothalamus occurred for self than for other. The hypothalamus is critical to regulating autonomic responses to emotionally salient stimulus, and also shares connections with brain regions involved in other aspects of emotion processing, such as the subgenual anterior cingulate and orbitofrontal cortex (Morecraft, Geula, & Mesulam, 1992; Nagai, Critchley, Featherstone, Trimble, & Dolan, 2004). Activation of the hypothalamus preferentially during self-related processing may reflect increased effects of autonomic arousal.
and sensory processing when perceiving or making judgments about internal states than when observing or inferring the presence of such states in others.

Nevertheless, the most striking pattern between self and other was that of overlap. This is not to say that there is a total overlap between the processing steps perceivers use to understand themselves and others. If this was the case, complex social situations and crowded subway platforms would be difficult to maneuver. Still, these differences do not appear as discrete, consistent separations between targets across all task types.

Mode of Processing: Direct vs. Reflective: When collapsing across targets and instead comparing activation peaks found in studies of direct vs. reflective processing, much clearer patterns of separation emerge (Figure 2). This contrast showed a dissociation of activation peaks in the MPFC and anterior cingulate cortex (ACC), such that reflective processing of traits, emotions, and mental states tended to activate more anterior points within these regions, whereas direct experience of emotion or pain more commonly activated posterior MPFC and ACC - regardless of whether the target was self or other.

This anterior to posterior gradient is consistent with the idea that high level, reflective, secondary appraisals about one's own or another person’s emotions are neurally and cognitively separable from primary appraisals of the potential threat value of stimuli, supporting findings of individual studies. For example, Kalisch et al. (2006) induced anxiety through anticipation of painful shock while subjects performed concurrent working memory tasks involving either low or high cognitive load. Although autonomic arousal and self reported anxiety were not affected by the amount of cognitive effort the secondary task required, a rostral MPFC region became more engaged for anxiety vs. non anxiety conditions only under low load, that is, when participants could attend to their anxiety. This finding, along with many others that directly
manipulate the need for high-level reflective appraisals suggests that rostral MPFC underlies appraisals of internal and emotional states when subjects can attend to and reflect upon those states, but not otherwise. This is also consistent with theories about the function of (especially ventral and orbital) prefrontal cortex that suggest it is a “zone of convergence”, integrating information about internal bodily states via connections with the hypothalamus and AI with external cues processed in the superior temporal sulci and the amygdala (Floyd, Price, Ferry, Keay, & Bandler, 2001; Mesulam & Mufson, 1982; Rolls, 2004).

By contrast, the ACC may react more automatically and in a bottom-up fashion to the presence of goal-relevant, affectively salient stimuli. In keeping with this notion, a recent study used structural equation modeling to explore effective connectivity between the PFC, ACC, and amygdala while subjects viewed emotional faces and either rated the gender of the face (incidental or direct emotion processing), or the emotion (reflective processing). During direct processing, information from the amygdala traveled to the ACC and then to the PFC, whereas during reflective emotion, this pattern was reversed (de Marco, de Bonis, Vrignaud, Henry-Feugeas, & Peretti, 2006). Since amygdala activation can indicate an “early” cortical mechanism responding to emotional salience, the cortical region it projects to first may indicate the type of appraisal that is made about that stimuli. Thus, the connectivity pattern reported in that paper is consistent with the idea that under a reflective mode of processing, appraisals of emotional value are made in a “top down” manner through the MPFC before reaching areas (such as the amygdala) more associated with automatic reaction to emotions of others (see also Keightley et al., 2003).

These data, along with the distribution of activation revealed by our plots, suggests that reflecting on emotional states depends upon the engagement of medial prefrontal regions
supporting high level appraisal processes used to represent information about the nature of one's own, or someone else's, mental states. This kind of reflection may be important for other types of top-down processing, such as those involved in cognitive forms of emotion regulation that depend upon the ability to know what someone is feeling. One such strategy is known as reappraisal, which involves actively rethinking the meaning of an emotionally charged stimulus in ways that change the trajectory of your emotional response to it. Reappraisal may involve awareness of and reflection upon the nature of one's own emotional response, as well as reflection upon the intentions and beliefs of others. Thus, regions associated with reflective processing of mental states may serve dual duty, helping us perform social cognitive tasks as well as regulate our emotions. In either case, MPFC may communicate with cortical and subcortical regions involved in the direct/bottom-up processing of affective cues, either amplifying or modulating their activity according to the nature of the reflective demands (i.e. amygdala; see Beauregard, Levesque, & Bourgouin, 2001; Etkin, Egner, Peraza, Kandel, & Hirsch, 2006; Ochsner, Bunge, Gross, & Gabrieli, 2002; Ochsner et al., 2004). These reflective processes could be employed in cognitive therapy, in which clients are encouraged to reflect on their emotional states and their causes in order to be able to effectively modulate and dampen their reactions to affective cues (Goldapple et al., 2004; Mayberg, 1997).

Interaction effects: degree of self other overlap depends on processing mode and content

Our main effect contrasts for perceiving self vs. other suggested that separating brain activations by the target of processing alone might resemble trying to slice a cake into the flour and sugar that went into it: although one can contemplate the separation conceptually, in actual practice, the two are hopelessly intertwined. Does this mean that the brain areas used to understand self and other are totally overlapping? Above, we hypothesized that the distinctions
between processing different targets might emerge as meaningful depending on the mode of processing a perceiver engages. To test this idea, we plotted activation points for self and other for only one processing mode (i.e. either direct or reflective) at a time, thereby identifying activations associated with either direct or reflective modes of perceiving self or other. In addition, we separated activations associated with different types of judgment and/or stimulus content. In particular, we considered whether activations might segregate for studies involving pain, emotion, or more purely cognitive judgments about non-affective beliefs. The goal was to determine whether distinct processing systems would subserve the perception of self and other, but only when engaged in direct as opposed to reflective processing for specific types of stimulus or judgment content.

Direct Processing of Self and Other: Some of the earliest theories suggesting that similar processes are used to group to perceive self and employed what we would term a direct processing framework. As described above, these theories have relied mostly on data from studies of mirror neurons and their engagement during the observation of motor actions (Brass & Heyes, 2005; Jarvelainen, Schurmann, & Hari, 2004), as well as mirror-like responses during perception of pain, disgust, and touch in other people. A handful of such studies demonstrating self/other neural overlap have influenced suggestions that perceivers understand social targets by automatically activating their own sensory, motor, and affect systems. In the following two subsections, we review studies exploring overlap in the neural systems used to perceive pain and emotion in the self and others.

Pain: One of the most compelling cases for overlap in the brain systems involved in self/other perception comes from the results of studies of pain. It is important to our survival that nociceptive (i.e. noxious and painful) signals allow us to pull away from a hot stove; equally
important is our ability to learn not to touch a stove someone else has pulled away from in pain. For over two decades, vicarious conditioning studies have provided a laboratory model of this phenomenon by showing similar skin conductance and heart rate responses when perceivers observe others learning to “fear” conditioned stimuli and when the perceivers themselves are being conditioned (Olsson & Phelps, 2004; Vaughan & Lanzetta, 1980). Imaging studies have focused on a parallel phenomenon, known as “empathic pain,” and have observed activity in overlapping regions of ACC and AI both when one experiences pain directly and when one sees someone else experiencing pain (Botvinick et al., 2005; Jackson, Brunet, Meltzoff, & Decety, 2006; Morrison, Lloyd, di Pellegrino, & Roberts, 2004; Singer et al., 2004). The fact that these two regions are associated primarily with affective responses to painful stimuli have been taken to suggest that suggesting that instead of understanding someone else’s pain in a cold and cognitive manner, we feel it as we would our own.

Although the finding of overlapping activity for self and other pain has been highly influential to theories of empathy, important differences for self and other pain have been observed. The process of understanding someone else's pain requires not just an affective response to that pain, but a number of additional processing steps as well. For example, one might need to attend to non-verbal, visual cues such as facial expression or body language that can be indicative of another person's response to a painful stimulus. What's more, some understanding of the motivational relevance of a painful situation for someone else may be used to constrain one's understanding of a target’s pain experience. Theoretically, these additional types of processing steps should recruit neural systems beyond those commonly supporting the representation of pain affect in self and other, including medial prefrontal regions described earlier that are important for reflecting upon the nature of one's mental states and posterior
cortical regions (such as the STS) important for interpreting nonverbal cues. By contrast, the direct perception of one's own pain may differentially depend upon regions important for the perception of one's own body, and the generation of physiological responses important for coping with a noxious stimulus. Regions such as the anterior insula, hypothalamus, and thalamus, described earlier as being important for perception of bodily states and sensations, might be expected to play a role in these processes.

To explore this possibility, Ochsner and colleagues (Submitted) had participants complete two tasks: in a self pain task, participants were exposed to both non-painful and painful thermal stimuli; in an other pain task, participants viewed others in painful and non-painful situations. As has been shown in previous work, we identified overlapping regions of AI and ACC more active for painful than for non-painful stimuli in both tasks. In addition, we found that perception of pain and others preferentially engaged a host of additional regions associated with reflective processing of mental states, including orbitofrontal cortex and rostrolateral PFC. By contrast, posterior sections of the AI were preferentially engaged by self pain (Figure 3). These findings suggested that we are as a common affective pain matrix is engaged by both self and other pain, additional functional systems are necessary to fully decode the meaning of painful experiences experienced personally or perceived in others.

We further hypothesized that while self and other pain both involve activation of the AI and ACC, this activation may be part of different cognitive and neural network activity in each case. In order to test this, we employed functional connectivity analyses. Whereas main effect contrasts that average activity across time and individuals may be insensitive to regions whose activity across two conditions co-vary, functional connectivity analyses are sensitive to such dynamic fluctuations (Friston et al., 1997). In the context of empathy for pain, these analyses
showed that during other pain as opposed to self pain, overlap areas in the ACC and AI become more connected to MPFC regions associated with theory of mind, whereas during self pain, ACC and AI become more connected to the hypothalamus and periaqueductal gray regions associated with processing autonomic responses (Zaki, Ochsner, Hanelin, Wager, & Mackey, Submitted). Based on these findings, we created a schematic representation of brain networks involved in perceiving self and other pain (Figure 4). Such a model can be used as an example of dissociating a seemingly similar process in self and other by probing interaction effects in the brain.

To provide further support for the dissociation of self and other processing in the context of pain, we plotted activations from previous studies of pain perception in self and other (Figure 5). Although the authors of these studies emphasized overlap for self and other perception in the affective pain matrix, Figure 5 shows that there are important differences as a function of the target of pain. Whereas self-pain more commonly activates the thalamus and areas along the central sulcus, other pain activated MPFC, bilateral ventrolateral PFC, and OFC, as well as visual association areas. Furthermore, all activation peaks anterior to the genu of the corpus callosum, representing associative regions of prefrontal cortex, occurred during other pain perception only.

While these differential activations seldom are discussed often in theoretical accounts of empathic pain, they are important in at least two ways. First, they suggest that while neural overlap between self and other pain processing may exist in the ACC and AI, the functional role of activity in these regions may differ in each context, depending upon the additional regions with which the ACC and AI are interconnected. Second, they provide means for explaining paradoxical effects of viewing pain in certain contexts. For example, during competition, one’s
own goal and those of someone else directly conflict. In these cases, it may be adaptive for perceivers to “turn off” otherwise automatic reactions to the pain of others (e.g. during athletic competitions or, more extremely, during war). In keeping with this notion, both autonomic and neural activity evoked by watching others in pain is reduced or reversed when the people in pain are in an adversarial or competitive relationship with a perceiver (Lanzetta & Englis, 1989; Singer et al., 2006). Under the hypothesis that processing of pain in self and other largely overlap, these effects would be difficult to explain. However, the recruitment of prefrontal regions important for perceiving the intentions of others could modulate the amount of AI and ACC activity perceivers engage while observing another person in pain, depending upon how a perceiver feels about or relates to that target.

Emotion: Emotional stimuli do not necessarily require reflective awareness of them in order to affect the way we feel, act, or engage in cognitive processing. This fact was taken advantage of by the producers of *The Exorcist*, who included grotesque subliminal images in their film, causing moviegoers to become terrified and nauseated even though they couldn’t quite pinpoint why. Before being discovered, these producers managed to show, in thousands of unwary subjects, the extent to which emotional cues we do not experience consciously can affect our mood. Importantly, emotion without reflection can affect other aspects of our cognitive and even perceptual functioning, such as how much money we will spend while shopping, or the part of a photograph to which we attend (Gasper & Clore, 2002).

Perception of emotional cues without reflection also has discrete neural correlates. Masked emotional stimuli can cause amygdala activation outside of awareness (Whalen et al., 2004; Whalen et al., 1998), though this finding has been contested (Pessoa, Japee, & Ungerleider, 2005; Pessoa, McKenna, Gutierrez, & Ungerleider, 2002). Interestingly, the
amygdala is preferentially engaged by faces displaying fear, even over other potentially threat-related emotions such as anger (Whalen et al., 2001). Given that the amygdala is connected to sensory systems via only a few synapses, this suggests that some of the fastest processing we use to assess potential threat may rely on cues about the emotional experiences of others who may be responding to something we should be avoiding. This possibility raises what by now should be an obvious question: does the neural activity accompanying perception of someone else’s fear resemble the neural activity we exhibit in response to our own fear? Or to extend William James’ already overextended phrase, does a perceiver become frightened by someone else running from a bear? If so, does that perceiver’s fear originate in an understanding of the frightened sprinter, or does the perceiver simply become primed for fear and vigilance outside of his awareness?

A few studies have argued that the latter may be true. This work extends the logic of studies examining so-called “shared representations” to the domain of perceiving facial expressions of emotion. By and large, findings have supported the theory that when we see someone else’s emotional face, we “feel” the same thing they do, by virtue of activating brain regions similar to those activated when we experience the emotion we see them expressing. For example, both seeing and imitating emotional facial expressions activates the amygdala and AI (along with classic mirror neuron regions in the inferior frontal and premotor cortices), suggesting overlap between perception and sensation of emotions (Carr, Iacoboni, Dubeau, Mazziotta, & Lenzi, 2003; but see also Leslie, Johnson-Frey, & Grafton, 2004).

Although these data suggest that direct processing of self and other emotion cues may recruit at least partially overlapping neural circuitry, this is certainly not the entire story. While the amygdala is associated with generating physiological components of emotional responses, an
early meta-analysis of emotions found that more frontal regions, including the MPFC and ACC, are actually the most commonly recruited by emotional stimuli (Phan, Wager, Taylor, & Liberzon, 2002), and more recent meta-analyses suggest that these regions are associated with emotional experience whereas the amygdala is not (Barrett, Mesquita, Ochsner, & Gross, 2007). Furthermore, an observational learning paradigm found that while watching someone else receive shock activated the amygdala, only subjects’ own fear of being shocked engaged ACC (Olsson et al, Under Review). This suggests that the perception of emotions experienced by another person may commonly trigger a “warning bell” to the self that danger is present, but does not engage prefrontal systems associated with higher level, reflective processing of mental states and intentions.

To parse the regions associated with processing of self and other emotion cues under direct and reflective modes of processing, we selected activation peaks from a group of emotion-related neuroimaging studies. In doing so, we defined a “direct” mode of emotion processing as any emotional response that a subject experiences or sees someone else experience but does not attend to or judge explicitly. Contrasts were included in the “direct self” category if they asked participants to passively look at aversive or amusing scenes or videos, or required participants to make a non-emotional judgment about those stimuli (i.e. was the image taken indoors or outdoors). Contrasts were included in “direct other” category if they asked participants to passively attend to or make non-emotional judgments about emotionally expressive faces or body movements.

Resulting plots are shown in Figure 6. The greatest degree of overlap between direct processing of self and other emotion cues occurred in anterior and posterior sections of MPFC, dorsal to the genu of the corpus callosum. These regions have been shown to respond to
emotional stimuli in general (Phan, Wager, Taylor, & Liberzon, 2002), but as reviewed above, also respond during tasks requiring reflective processing of mental states including, theory of mind tasks and action monitoring (Amodio & Frith, 2006). Self and other stimuli also produced heavily overlapping patterns of activity in left STS regions associated with the perception of nonverbal social cues (Pelphrey, Morris, & McCarthy, 2004).

The fact that these regions are engaged both by reflective processing of social targets in general, and by the direct processing of affective cues regardless of target, highlights the important role that understanding the intentions of others plays in appraising the affective significance of stimuli. Indeed, many appraisal theories of emotion postulate that specific computations about the intentions of others determine whether or not we feel angry or sad, happy or surprised, in response to the actions of other people (Scherer, Schorr, & Johnstone, 2001).

Perhaps as important as these regions of overlap, self and other processing of emotion also showed disparate patterns of activations in several brain regions. While “direct other” emotional stimuli more commonly activated bilateral premotor cortex, amygdala and right temporoparietal junction (TPJ), “direct self” emotions showed unique activation peaks along the right temporal pole, medial occipital lobe, and thalamus. The premotor and TPJ activations in the “other” condition are consistent with previous accounts of “motor empathy” in which covert imitation plays some role in processing emotional cues from others (Iacoboni, 2005; Iacoboni et al., 1999). The TPJ is often associated with making inferences about the mental states of others (Saxe & Kanwisher, 2003; Saxe & Wexler, 2005) as well as the disengagement of spatial attention more generally (Corbetta, Kincade, Ollinger, McAvoy, & Shulman, 2000); as such its presence preferentially in “other direct” emotion may suggest attempts to orient to alternative interpretations of other people's affective responses. The activation of amygdala during other
emotion, and of the thalamus in self emotion, respectively, suggests that qualitatively different processes underlie each type of emotion. In keeping with our discussion of the perception of pain, perceiving emotions in others may depend upon systems sensitive to detecting potentially goal relevant features of the environment, whereas experiencing our own emotions may involve greater monitoring of internal bodily states.

Summary: In reviewing studies of pain and emotion, we found that under a direct mode of processing, the brain regions engaged by perceiving self and other partially overlap, corresponding with the emphasis of many studies on so-called “shared representations” in empathy and social cognition. These overlaps occur mainly in cortical regions (i.e. AI and ACC) used for integrating emotional cues or sensations into coherent second order (i.e. non-sensory) representations of affective states. However, we also found striking dissociations between self- and other-related activation peaks. Specifically, watching others feeling pain or expressing emotion engaged motor cortex, which may help us understand intentions underlying others’ actions, as well as the amygdala, which may trigger vigilance in response to the perception of others feeling threatened. On the other hand, the experience of self pain and emotion consistently involved postcentral gyrus, thalamus and hypothalamus, areas associated with processing information about bodily states and sensations. Furthermore, connectivity analyses of perceiving pain in the self and in others revealed that only other pain causes ACC and AI to become functionally connected with the MPFC, an area associated with mental state inference (Zaki, Ochsner, Hanelin, Wager, & Mackey, Submitted). Together, these findings indicate that while perceivers may experience responses to their own pain and emotion that are similar to those experienced when they perceive pain and emotion in others, the functional networks through which these sensations are created may be importantly different.
Reflective Processing of Self and Other: The patterns of dissociation between self and other we observed when participants are in a direct mode of processing are the product of differential recruitment of systems important for processing be sensory information available for direct personal experience as compared to the indirect observation of others. To the extent that reflective processing integrates lower-level sensory and perceptual cues into higher order representations, we would expect similar systems to support the reflective processing of multiple types of cues, including those associated with the perception of emotion in oneself and other people.

Emotion: To explore this hypothesis, we plotted activation peaks from several studies of reflective emotion processing in Figure 7. To date, there have been no studies of the reflective processing of pain. As described above, we constrained our plots to show the results of main effect contrasts requiring explicit judgment of affective states. The “reflective self” category included any contrast in which participants were asked to rate their own experience while viewing emotional stimuli, whereas the “reflective other” category included contrasts where participants rated the emotional state of someone else in a picture, vignette, or cartoon. We included both contrasts comparing judgment to no judgment and contrasts comparing affective judgments to judgments about external stimulus features (i.e. emotional state vs. gender of someone in a picture). Because we were also interested in the relationship between qualitatively different types of reflections about others, we plotted “reflective other,” studies in which subjects made non-emotional mental state judgments about others in vignettes, pictures, and cartoons separately from those where participants made judgments about the enduring personality traits of targets (which in all cases involved both emotional and non-emotional judgments, Figure 8).
Several distinctions emerged in these plots. First, reflective emotion processing showed several regions of overlap for both self and other targets. These overlaps included activations in precuneus and posterior cingulate cortex (PCC), the MPFC, bilateral temporal poles, and medial OFC. These findings are important because virtually all of these regions have been previously described as important for mental state attribution in general (Frith & Frith, 2003). The present analysis highlights once again the importance for emotion of regions previously associated with social cognition and mental state attribution in general. Activity in numerous subregions of MPFC, including anterior and ventral portions of this region was not surprising, given that MPFC is central to both inferences about internal states (Amodio & Frith, 2006; Mitchell, Neil Macrae, & Banaji, 2005) and emotional experience, as described earlier.

Activity in two additional overlap regions - the precuneus and PCC - is worthy of additional discussion, as they have not been discussed previously. Activity in the precuneus is often related to both visuospatial imagery and self-focused attention (Cavanna & Trimble, 2006; Gusnard, Akbudak, Shulman, & Raichle, 2001; Kelley et al., 2002) visual perspective taking in a first person (Vogeley & Fink, 2003) or third person (Ruby & Decety, 2001) point of view. Importantly, the precuneus does not have connections with any primary sensory cortices, but does have efferent connections to the STS and ACC, and may be involved in directing attentional resources to salient social or emotional stimuli (Lou et al., 2004). Similarly, the PCC is often recruited in self-referential mental and emotional tasks, and Vogt et al. (2006) have suggested that ventral PCC may play a part in a ventral attentional stream, sending information about potentially salient stimuli to the vACC through direct reciprocal connections. Together, common activation in these regions suggests that perceivers use similar mechanisms for self and other perception to direct attentional resources to emotional cues.
Dissociations between activity associated with reflective judgments of self and other were subtler than the analogous differences described in the context of direct emotion processing. These differences may be less reliable, and are deserving of attention and future research designed to unpack their functional significance. For present purposes, we will merely note reflective judgments of other people's emotions more commonly recruited extrastriate and medial occipital cortices, which is consistent with the fact that these tasks involved explicit attention to people, mostly in visual scenes. In addition, whereas self-related judgments more commonly recruited inferior frontal regions, other-related judgments more often recruited lateral orbitofrontal regions. Given that both of these regions are associated with response selection and response in addition, and that their precise computational roles remain a hot topic of debate, it is not yet clear what this result might mean.

Overall, however, the most striking feature of these plots is the commonality of activity regardless of the target of perception. Importantly, this differs from the pattern observed for direct processing of emotion which showed recruitment of both common and distinct regions for self and other. Together, these patterns suggest that when the self or someone else is viewed as an object of reflection, a network of regions comes in to play that is involved in directing attention, interpreting social cues, and inferring internal states. By contrast, in the absence of reflective processing, the direct and bottom-up perception of emotion from low level cues recruits different systems depending upon the type of perceptual input associated with each target (visceral for self vs. visual for other).

Distinct neural substrates for different types of reflective judgment: The reflective mode of processing offers myriad possible ways of attending to, and elaborating our judgments about ourselves and other people. We might, for example, think about how someone feels as compared
to what they are thinking, and such differences in focus might involve different underlying neural circuitry. To determine whether the way in which we reflect upon our own or others' mental states depends upon different underlying neural systems, we examined separately activations related to emotional as compared to non-emotional mental state judgments (i.e. false belief tasks). This analysis revealed a dissociation in brain regions recruited by cognitive as opposed to affective inferences about other people (Figure 8). Whereas cognitive judgments more commonly recruited bilateral temporo-parietal junction (TPJ) and frontal eye fields (FEF), affective judgments more commonly recruited orbital frontal and anterior vMPFC regions.

TPJ is associated with mental state judgments (Saxe & Kanwisher, 2003; Saxe & Wexler, 2005), and also with shifting attention towards behaviorally relevant stimuli in, for example, external cueing tasks (Kincade, Abrams, Astafiev, Shulman, & Corbetta, 2005). FEF is engaged during tasks requiring increased attention to and working memory for visuospatial stimuli, including when one attempts to inhibit reflexive tendencies to shift one's eyes towards a visual stimuli (Curtis & D'Esposito, 2003). Activations in these regions when drawing inferences about cognitive, but not affective states, could suggest that cognitive inferences depend to a greater extent upon the mental manipulation of information about stimuli in the external world. This could especially be the case given that oftentimes (as in a false belief task), cognitive inferences require participants to keep two disparate mental states (their own and their target’s) in mind, as well as overriding the prepotent desire to impose their own mental states and knowledge on a target. Theory of mind critically relies on executive function, and especially on inhibitory control, and the two develop in parallel (Carlson & Moses, 2001). When our own perspectives and someone else’s differ (i.e. we have knowledge that a target does not), making accurate judgments about their state requires us to adjust from our own state, a process that is
attentionally demanding. Activation of FEF and TPJ during mental state inference may reflect the unique attentional demands of keeping multiple mental states in mind simultaneously.

Engagement of OFC and related ventral MPFC regions when drawing affective inferences could be related to the role these regions play in representing the motivational value of stimuli. Single unit recording, lesion, and functional imaging studies of conditioning and reinforcement learning have long implicated OFC and ventromedial PFC in representing the current motivational or affective value of stimuli as it changes over time as a function of one's current goals (Barrett, Mesquita, Ochsner, & Gross, 2007; Rolls, 2004). OFC also shares strong connections with the hypothalamus, which projects to brainstem nuclei controlling autonomic outflow, and its activity has been shown to covary with skin conductance responses (cf. Nagai et al., 2004). By contrast, the amygdala has been thought to encode relatively enduring, context-free and stimulus-driven associations between perceptual cues and physiological responses (Schoenbaum, Chiba, & Gallagher, 1999). The OFC could therefore play an important role in representing either one's own or another person’s current affective state.

This hypothesis could explain the role of OFC in the perception of emotion in self and other. Consider, for example, the results of a recent study in which participants saw emotional or neutral pictures and then rated their affect for the subsequent 20 seconds after the pictures disappeared. After viewing negative pictures, subjects commonly reported feeling sustained emotion after the picture itself was gone. While timecourses of amygdala activity tracked with the presence of negative pictures, lateral OFC activity tracked participants sustained self-reported emotional response (Garrett & Maddock, In Press). In this study, OFC reflects the personal experience and generation of an emotional response to a stimulus. Interestingly, antisocial and psychopathic patients, as well as patients with orbitofrontal and vMPFC damage, show blunted
autonomic reactions to expected stressors (Bechara, Tranel, Damasio, & Damasio, 1996; Raine, Lencz, Bihrlle, LaCasse, & Colletti, 2000), as well as in anticipation of unpredictable stressors (Roberts et al., 2004). Suggesting that they may be unable to generate context-appropriate affective responses.

Now consider the results of other studies suggesting that affective representations in OFC may help us understand the emotions generated in other people. OFC patients don’t understand social faux pas (Stone, Cosmides, Tooby, Kroll, & Knight, 2002), and also fail to experience normal levels of self conscious emotion in social interactions that would engender either pride or embarrassment in healthy individuals (Beer, Heerey, Keltner, Scabini, & Knight, 2003). Self-conscious emotions like these are important in social interactions because they tell us when our own behavior has had intended (pride) or unintended (embarrassment) consequences for others. To the extent that damage to OFC renders us unable to experience these emotions normally, we may make become inappropriately boastful, forward, or rude.

Summary Comparisons of patterns of neural activity associated with a reflective mode of processing for self and other showed much more overlap and fewer differences than did the same comparison for the direct mode of processing. This suggests that when making explicit judgments about people, perceivers tap into a common set of cognitive and affective processes regardless of whether they are reflecting about themselves or someone else. Perceivers direct their attention to salient cues, infer internal states, and also create corresponding autonomic and emotional states in themselves when trying to infer emotions in others, and when inferring false beliefs may use inhibitory control to separate their point of view from their target’s.

CONCLUSIONS AND FUTURE DIRECTIONS
Now that we have taken this whirlwind tour of the data on direct and reflective modes of processing for self and other targets, we can take a moment to recap where we’ve been, and then revisit some questions we began with to see if we’re any closer to answering them than when we started.

The premise of this chapter was that we could gain insight into the processes mediating perception of one’s own feelings and thoughts, or those of other people, by using data from functional neuroimaging studies. We felt that that common and distinct patterns of activity associated with the mode of processing – reflective or direct – and the target of perception – self or other – could be used to address this question. Our method was to perform a qualitative meta-analysis of studies examining the perception of one’s own or other people’s affective states. Our results suggested two conclusions. First, when perceivers reflect on the emotions of others, they do so using mechanisms similar to those they use to process their own emotions. Second, in the absence of reflective attention, overlapping but distinct processes are used to represent your own or other people’s affective states.

Do these data help us understand whether representational overlap between of our own emotions and those of others allow smooth navigation of the social world, and whether it could stimulate prosocial behavior, as suggested in *I Heart Huckabees*? This question is important not just because it relates to the fanciful premise of a moderately successful existential film, but because the ability of neuroscience data to address it may provide a litmus test for our current social cognitive neuroscience models of social behavior.

Not coincidentally, this question is also the subject of a longstanding debate in social psychology. Daniel Batson and his colleagues have argued that we help others because of a selfless *empathic concern* we feel for them. For example, in a series of studies, Batson asked
participants to decide whether they would like to perform a fun task with the potential of earning money, or a boring task for which they would not get paid. Whichever task they did not choose would be given to another person whom the participant would not meet. An experimenter gave each participant a coin to flip in case they wanted to make a “fair” choice. Before deciding, subjects were either 1) not given instructions, 2) told to imagine themselves in the other person’s situation, or 3) told to think of the other person’s feelings while they made their decision. Thinking of oneself in someone else’s situation caused participants to flip the coin more, but not to assign the other person to the more desirable task, whereas thinking of the other person’s emotions at the time caused most participants to take on the more boring task for themselves (Batson et al., 2003). These results and others support Batson’s view that perspective taking and emotional empathy are at the root of prosocial behavior towards others (Batson et al., 1991; Batson et al., 1988), including social outgroups towards whom we might otherwise find threatening (Batson et al., 1997; see also Eisenberg & Miller, 1987).

Other researchers have disagreed, however, with Batson’s idea that prosocial behavior is impersonal or selfless in nature. Several studies have claimed that the effect of empathy on prosocial behavior is moderated (or replaced) by a sense of similarity – or overlap – between self and other. That is, we help people only because we feel connected to them in some way, and their suffering causes us suffering as well (Cialdini, Brown, Lewis, Luce, & Neuberg, 1997; Cialdini et al., 1987). From this viewpoint, empathy may create a feeling of similarity between a participant and the person whose perspective they are taking (Davis, Conklin, Smith, & Luce, 1996). In the end, Cialdini and colleagues argue that it is only because of a desire to reduce our own suffering that we choose to help others. For example, one study related volunteer AIDS workers’ motivation to their resulting helping behavior, and found that empathic concern
moderated helping only if the patient that volunteers worked with was a member of their ingroup. This effect was replicated in a laboratory paradigm testing spontaneous helping behavior for a confederate who participants believed had hepatitis (Sturmer, Snyder, & Omoto, 2005).

If helping behavior is driven by an observer’s own distress while seeing someone else’s suffering, it makes sense that we should preferentially help those closest to us. While it is painful to read news stories about natural disasters happening in foreign countries, this pain is fundamentally different than what we feel when a friend or family member is injured. We are more likely to ascribe secondary emotions (i.e. shame, pride) to ingroup members, suggesting that we attend more to their emotional states, allowing us to feel a greater sense of overlap with them, and to feel more distress at their distress (Leyens et al., 2000). Group membership in this context can be defined by a situation, rather than by traits such as race or gender. This could explain the lack of empathy subjects had for competitors in Lanzetta (1989) and Singer’s (2006) work.

Does our review of the neuroimaging literature on self and other perception suggest that helping behavior is mediated by emotional perspective taking (as claimed by Batson), or that it instead depends on an overlap between self and other (as claimed by Cialdini and others)? Our review indicates that while self and other perceptions differ importantly when one is processing information in a direct, unreflective manner, paying attention to someone else’s emotional state increases the similarity of regions used to perceive one’s own emotions and those of another person. In other words, to the extent that an observer attends to and reflects upon the emotional states of a target, a richer, more reflectively elaborated representation of that target’s state begins to emerge for the observer. Behavioral data converges with imaging data by suggesting that this
reflective representation more closely approximates how the observer views herself: perspective taking causes observers to rate targets as more similar to themselves (Davis, Conklin, Smith, & Luce, 1996).

Applying our models of the brain bases of self and other perception to real world dilemmas such as the motivations for prosocial behavior remains a speculative pursuit, but one which we feel can nonetheless be fruitfully expanded on through further use of brain imaging data. Hopefully, this chapter has served to illustrate how such data can be used begin building theories of person perception that link psychological processes to their neural bases. It remains for future work to take the next step and link this work directly to behavior in prosocial contexts to determine whether the presence of “shared representations” truly mediates one’s desire to help, or at least feel like an existential blanket.
References

Self and other representations 39

Table & Figure Captions:

Table 1: A schematic representation of phenomenon included in our neuroimaging activation plots, according to the dimensions of target (self vs. other) and mode of processing (direct vs. reflected). Emotion is highlighted to demonstrate its ubiquity among all four cells.

Table 2: Studies utilized in our activation plots.

Figure 1: Main effect of target (self vs. other) on neuroimaging activation peaks.

Figure 2: Main effect of mode of processing (direct vs. reflective) on neuroimaging activation peaks.

Figure 3: Interaction effects from our recent study of empathy for pain (Ochsner et al., Under Review). Orbitofrontal (OFC) and rostrolateral prefrontal cortex (RLPFC), as well as premotor regions, became more active during “other pain” as opposed to self pain. The anterior insula (AI) showed the opposite pattern.

Figure 4: A circuit model diagramming the interaction of brain areas during self and other pain only, as well as interactions occurring during both types of pain. Connections in the model are based both on connectivity analyses from Zaki et al., and on existing information about intrinsic physical connections between these regions. MPFC, medial prefrontal cortex; STS, superior temporal sulcus; PI, posterior insula; ACC, anterior cingulate cortex; AI, anterior insula; Thal, thalamus; HT, hypothalamus; PAG, periaqueductal gray; PI, posterior insula; Prec, precuneus.

Figure 5: Neuroimaging activation plots demonstrating the effect of target (self vs. other) on pain perception.

Figure 6: Neuroimaging activation plots demonstrating the effect of target (self vs. other) on the direct processing of emotion.

Figure 7: Neuroimaging activation plots demonstrating the effect of target (self vs. other) on reflective processing of emotion.

Figure 8: Neuroimaging activation plots demonstrating the effect of perspective taking type (cognitive vs. affective) on neural activity.
Table 1: Person Perception Phenomena Included in Meta-analysis Grouped as a Function of Mode of Processing and Target of Processing

<table>
<thead>
<tr>
<th>Mode of Processing</th>
<th>Self</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct</td>
<td>Pain, arousal, emotions, agency</td>
<td>Traits (stereotypes), intentions, goal-oriented movement, emotions</td>
</tr>
<tr>
<td>Reflected</td>
<td>Traits, emotions, beliefs, knowledge, familiarity, mental states, intentions</td>
<td></td>
</tr>
</tbody>
</table>

Target
Table 2: Studies Included in Meta-analysis as a Function of Mode of Processing and Target of Processing

<table>
<thead>
<tr>
<th>Author/year</th>
<th>Phenomenon</th>
<th>Author/Year</th>
<th>Phenomenon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self</td>
<td></td>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>Fossati 03</td>
<td>Trait Attribution</td>
<td>Brunet 00</td>
<td>Intentions</td>
</tr>
<tr>
<td>Moran 06</td>
<td>Trait Attribution</td>
<td>Calarge 03</td>
<td>Mental States</td>
</tr>
<tr>
<td>Hutcherson 05</td>
<td>Emotion</td>
<td>Castelli 00</td>
<td>Intentions</td>
</tr>
<tr>
<td>Kircher 05</td>
<td>Trait Attribution</td>
<td>Gallagher 00</td>
<td>Beliefs</td>
</tr>
<tr>
<td>Kjaer 02</td>
<td>Trait Attribution</td>
<td>Goel 95</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Lou 04</td>
<td>Trait Recall</td>
<td>Moran 06</td>
<td>Trait Attribution</td>
</tr>
<tr>
<td>Ochsner 04</td>
<td>Emotion</td>
<td>Hynes 06</td>
<td>Mental States, Emotion</td>
</tr>
<tr>
<td>Ruby 01</td>
<td>Trait Attribution</td>
<td>Lou 04</td>
<td>Trait Attribution</td>
</tr>
<tr>
<td>Schmitz 04</td>
<td>Intentions</td>
<td>Mitchell 04</td>
<td>Impression Formation</td>
</tr>
<tr>
<td>Seger 04</td>
<td>Preference</td>
<td>Mitchell 05</td>
<td>Impression Formation</td>
</tr>
<tr>
<td>Phan 04</td>
<td>Emotion</td>
<td>Mitchell 05b</td>
<td>Mental States</td>
</tr>
<tr>
<td>Kelley 02</td>
<td>Trait Attribution</td>
<td>Mitchell 05c</td>
<td>Mental States</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mitchell 06</td>
<td>Impression Formation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ochsner 04</td>
<td>Emotion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ruby 01</td>
<td>Intentions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Saxe 03</td>
<td>Beliefs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Schmitz 04</td>
<td>Trait Attribution</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seger 04</td>
<td>Preferences</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vollm 06</td>
<td>Mental States, Emotion</td>
</tr>
<tr>
<td>Direct</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aalto 05</td>
<td>Emotion</td>
<td>Botvinick 05</td>
<td>Pain</td>
</tr>
<tr>
<td>Botvinick 05</td>
<td>Pain</td>
<td>Carr 03</td>
<td>Emotion</td>
</tr>
<tr>
<td>Cato 04</td>
<td>Emotion</td>
<td>Chaminade 02</td>
<td>Intention</td>
</tr>
<tr>
<td>Farrer 02</td>
<td>Intention</td>
<td>Decety 02</td>
<td>Intention</td>
</tr>
<tr>
<td>Hutcherson 05</td>
<td>Emotion</td>
<td>Decety 03</td>
<td>Emotion</td>
</tr>
<tr>
<td>Morrison 04</td>
<td>Pain</td>
<td>Farrow 01</td>
<td>Emotion</td>
</tr>
<tr>
<td>Paradiso 99</td>
<td>Emotion</td>
<td>Jackson 05</td>
<td>Pain</td>
</tr>
<tr>
<td>Schaefer 05</td>
<td>Pain</td>
<td>Jackson 06</td>
<td>Pain</td>
</tr>
<tr>
<td>Singer 04</td>
<td>Self Recognition</td>
<td>Morrison 04</td>
<td>Pain</td>
</tr>
<tr>
<td>Sugiiura 00</td>
<td>Emotion</td>
<td>Ramnani 04</td>
<td>Agency</td>
</tr>
<tr>
<td>Taylor 03</td>
<td></td>
<td>Saarela 06</td>
<td>Pain</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Singer 04</td>
<td>Pain</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Winston 03</td>
<td>Emotion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hooker 03</td>
<td>Intention/movement</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pelphrey 04</td>
<td>Intention/movement</td>
</tr>
</tbody>
</table>
Figure 1:
Self vs. other regardless of construal level

Figure 2:
Construal level regardless of target
Figure 3:

Interaction of Pain with Self/Other Targets

Figure 4:
Figure 5:

Pain Processing in Self and Other

Figure 6:

Direct Emotion in Self and Other
Self and other representations

Figure 7:

Reflected Emotion in Self and Other

Figure 8:

Types of Perspective Taking